Ambulatory Care Complex & Women’s Life Center

Estimated New Space: TBD
Space to be Removed: None
Estimated Construction Period: TBD

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
Most of the ambulatory services to be housed in the Ambulatory Care Complex (ACC) are supported in about 66,000 net square feet of assigned space in the School of Medicine Building (Building 521). Some other services could relocate from leased sites in Research Park or space presently assigned in the University Hospital.

The Ambulatory Care Clinic will consist of a new outpatient clinical care building for clinics primarily located in Building 521. Building 521 has been identified as being seismically challenged, and the development of an alternative site for outpatient services is in some measure part of an effort to decant Building 521 in preparation for eventually demolition and replacement. However, another aspect of the Ambulatory Building project is to provide a more comprehensive, better organized, accessible, and patient-friendly site in which to provide ambulatory services in an increasingly competitive medical services market.

The Women’s Health Center component is designed to address critical health issues of women across the entire spectrum of life, but focusing in depth on the critical period of mid-life. The Center will capitalize on existing strengths of University Health Care’s services, enhancing and expanding them and organizing them in one convenient location, allowing full and easy access to an entire spectrum of services designed to address issues of women’s health, providing a seamless and positive patient experience.

Site:
The Beverly Taylor Sorenson Arts and Education Complex

Estimated New Space: 53,690 NSF
Space to be Removed: None
Estimated Construction Period: Aug 1 2010-Aug 1 2012

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(verbatim comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
The Virginia Tanner Dance / Children’s Dance Theater (VTD/CDT) building of 7,630 NSF, has barriers to accessibility. The costumes are exposed to water, fire, and environmental hazards. The mechanical system is inadequate. Given limitations on space, VTD/CDT typically has greater demand for classes than availability. Faculty and staff must share workspaces and class preparation areas. Tanner Dance currently has until the summer of 2009 to create new space for their Programs pending the demolition of their present structure to accommodate the proposed Student Life Center.

The College of Education has Total 59,770 NSF, which includes 48,809 NSF in Milton Bennion Hall (MBH). This project will consolidate current programs now spread out. MBH is seriously worn and has frequent, on-going maintenance issues. Pipes and equipment are constantly failing. Water line breaks often occur, causing damage to documents and equipment. The HVAC and electrical systems cannot meet the current or future needs of the College programs. Seismic Deficiencies: The existing shear walls in the west wing increase the lateral forces in the building because of added torsion forces. The existing shear walls do not meet current building code requirements to resist the current code specified lateral forces. The “T” shape of the building creates adverse effects at the corners where the west wing joins the main building.

The floor and roof diaphragms are not connected where Phase I meets Phase II. Also, the floor and roof diaphragms do not have adequate anchorage to be able to transfer the current code lateral forces to the existing shear walls. The interior partitions are not laterally braced. RVS Information: This building received a final structural score of 1.2 and given a seismic rating of very poor.

Site:
David Eccles School of Business Replacement & Expansion

Estimated New Space: 113,209 NSF
Space to be removed: 48,657 NSF
Estimated Construction Period: Jul 2010-Jul 2012

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
The David Eccles School of Business is underserved in 44,009 net square feet of existing space spread among three older buildings originally constructed in the 1960’s along with the 19,735 NSF C. Roland Christensen Center (CRCC) which was constructed in 2000. The CRCC building provides up-to-date spaces more in line with what the School needs, but is already operating at capacity. When the 1960’s buildings were constructed, the school’s enrollment was half the amount of today. This project is needed for the school to function properly, fulfill its mission, and accommodate new centers and programs.

The removal of Francis A. Madsen Building (FAMB), and the Kendall D. Garff Building (KDGB), will provide buildable area needed for new construction. The programming team has assessed existing conditions, facility function, program expansion needs, and costs of renovation versus replacement. The buildings constructed in the 1960’s have numerous building code problems, seismic deficiencies, life-safety related issues, ADA access compliance problems, and outdated technology systems. Replacement of existing FAMB and KDGB buildings is recommended over seismic upgrade and remodeling in order to achieve best use of dollars and efficient use of building site area without disturbing major campus utilities. Replacing these older buildings with new construction is also recommended to achieve floor to floor heights that accommodate tiered classrooms, and best achieve technology and flexibility needs of the business school learning environment. Due to the constraints of the site, it will be necessary to first demolish FAMB and construct the first portion of the building. KDGB will then be demolished to allow construction of the balance of the project.

Site:
Electrical Distribution Replacement

Estimated New Space: N/A
Space to be Removed: None
Estimated Construction Period: Aug 1, 2010-Aug 1 2012

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
The existing distribution system includes three substations, distribution duct banks, wire, switch vaults, connection, transformers and related electrical distribution systems. Much of the system was installed in the 1950s and 1960s. Equipment is in poor and failing condition. Electrical voltages vary. Balance of electrical loads and ability to operate system effectively has eroded over the decades. Growth on campus over the past 50 years as compromised the reliability and redundancy of the system. Loops feed too many buildings and main circuits are loaded to capacity. Existing equipment will be scrapped or salvaged.

The current electrical distribution is failing at an increasingly catastrophic rate. Major outages as a result of equipment or feeder failures are occurring more frequently and lasting longer. In the past 12 months alone there have been eight equipment failures resulting in 333 hours (almost 14 days) of electrical outages that resulted in a portion of campus (multiple buildings) being left without electricity. Due to system loading and loss of redundancy, many buildings affected have no alternative route for electricity. Building emergency generators (if available) run and many critical and most non-critical operations are suspended until the repairs can be completed. Often parts for repairs are not available due system obsolescence and custom part solutions have to be built. The trend is for the equipment failures to occur more frequently, effect a larger portion of campus, and last longer.
High Temperature Water Distribution Replacement

Estimated New Space: N/A
Space to be Removed: None
Estimated Construction Period: Apr 20, 2009-Aug 13 2013

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
The HTW system provides heating and hot water needs for building temperature and for research processes across all of campus. The high temperature water is generated in two central plants then distributed throughout campus through the HTW distribution system. The existing distribution system is direct buried steel pipe in an insulated bed. It is for the most part over 30 years old. Corrosion from ground water and drainage has severely deteriorated the pipe from the outside in. Pipe life expectancy in this type of installation is about 20 years. The existing distribution will be abandoned in place.

Current systems are failing at an increasingly catastrophic rate. The conditions of the distribution piping from both the East HTW Plant and from the Main Campus HTW Plant are the same. 5 to 10 major breaks per year are occurring. Each break requires the system, including the central plant, to be shut down during repairs. Each shut down is for a minimum of 1 day and typically will take several days. During that time all buildings served by the plant are affected. During the 2007/08 heating season there were over 20 days of no heat to some portion of campus buildings. The frequency and size of breaks each season is escalating.
Kennecott Building Renovation Phase 1

Estimated New Space: 26,138 NSF
Space to be Removed: None
Estimated Construction Period: Jun 1, 2009-Jun 1 2010

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods

Project Information:
The Kennecott Building was designed and built in the early 1950s as a research facility by Kennecott Copper Corporation on land leased from the University of Utah. An addition to the north at the east end of the original building was constructed in 1955. A second addition north of the 1955 addition was constructed in 1967. The University took possession of the building in the 1990s and in 2002 remodeled the high bay space in the west wing and adjacent ground floor space in the west half of the original building. In 2004 an exterior exit stair from the 2nd level was constructed along with some minor remodeling of the northwest corner of the west wing. During these two later remodels the electrical service was upgraded, the fire alarm system was modernized and the fire sprinkling system service was brought into compliance with current Campus Standards.

A preliminary study prepared in May 2007 concluded that the existing building did not have the structural capacity to withstand a seismic event of the magnitude anticipated by current building code. It was also recognized that existing life safety systems, windows, the elevator, mechanical and electrical systems, although in some instances recently upgraded, were in many cases in need of significant modernization or replacement. A 2008 feasibility report analyzed whether the cost of upgrading the multiple systems within the building as part of a major remodel could be justified when compared to the cost of new construction. A significant factor affecting feasibility is the quality of space obtainable by remodeling. It was determined that quality office and lab space roughly comparable to that achievable with a new building can be realized with the renovation of the existing structure. It was also determined that the renovated building will have a projected useful life equal to that of a new building.

Site:
L.S. Skaggs Pharmacy Research Building

Estimated New Space: 81,600 NSF
Space to be Removed: None
Estimated Construction Period: Jun 1, 2009-Apr 1 2013

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
College of Pharmacy faculty and research programs are currently housed in six buildings, four of which are in Research Park (RP), totaling 110,161 assignable square feet. The RP buildings are separated from the two Health Sciences Center buildings by nearly a mile, making communication and collaboration among faculty, students and staff extremely difficult. Funding of this proposal will enable consolidation of research programs, thereby enhancing interactions that will lead to the development of collaborative projects, expanded grant and contract support, and the creation of new spin-off companies. The existing L. S. Skaggs Building is obsolete in terms of its ability to adequately support the wet lab research efforts of the College of Pharmacy faculty. The building will be renovated into an office and computational research facility, along with additional education support space.

The laboratories in Building 582 have inadequate infrastructure to adequately support wet bench research programs. Specifically, mechanical and electrical systems do not provide adequate heating, cooling and capacity for electrical demand to support equipment and experiments. Building controls systems are obsolete. The labs lack adequate natural lighting and are not suitable for the recruitment of faculty. The design of the laboratory space is not conducive to collaboration among faculty, staff and students. There is inadequate office space and work space to support the faculty and staff.

This project is needed to maintain and advance the College of Pharmacy as one of the premier colleges in the country. Without the new building, there will be no space to retain and attract investigators who bring both existing and new grants to the College.

Site:

![Site Diagram](image-url)
Meldrum Civil Engineering Building

Estimated New Space: 9,500 NSF
Space to be Removed: None
Estimated Construction Period: Sept 1 2010-Jun 1 2012

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns:
(verbatim comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:
The project will be an addition of 10,000 square feet to the EMRL building. The new space will consist of new student activity space, faculty offices, state-of-the-practice design/build studio and department administrative and advising offices. The addition will be added to the North and West faces of the EMRL building. The south entrance of the building (500 square foot foyer) will be remodeled as an additional student organization and study area. There is no demolition of major elements for this project. The new project will also be used to seismically strengthen the existing EMRL building. This will require special knowledge by the design team and the constructors of the existing lateral load carrying capacity of the building and balancing of the shear center of the new construction. Since the existing EMRL building has exterior hallways, nearly all the construction will be usable office, studio or study space.

The new facilities will provide the students with a 21st century design/build studio for the capstone Civil and Environmental Engineering course, Professional Practice and Design, as well as other professional training courses for graduate and undergraduate courses. The state-of-the-practice facility will integrate building project simulations, drawings, technical designs and a collaborative team design studio. This is a major identified need for the program by the industrial advisory board of the department and the new accreditation criteria. The administrative and faculty offices will integrate the Department of Civil and Environmental Engineering more clearly into the College of Engineering and provide fully functional professional facilities for the department. The new facilities will also allow Civil and Environmental Engineering to provide space in CME for graduate researchers, visiting scholars and our large traffic lab. We are currently losing stellar students and faculty prospects because of the dilapidated condition of our facilities and the lack of office space for our funded graduate students and teaching assistants. This building addition is one step toward solving some of the space and condition issues.

Site and Infrastructure:
The proposed site is on the west side of the existing building. It is anticipated that existing utility infrastructure will be sufficient to serve the new facilities.
Photographs and Maps:

Proposed Project Site
South Campus Housing Phase I

Estimated New Space: 88,600 NSF
Space to be Removed: None
Estimated Construction Period: Jun 1, 2008-Sep 26, 2012

Anticipated Community Impacts: No Impacts have been identified to date as a direct result of this project.

Community Concerns (verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods):

Project Information:
Over the past three years, occupancy rates for the undergraduate halls have continued to increase until 2008 when there was a waitlist after opening. In 2006 and 2007 wait lists were also developed over the summer, but those remaining on the list were able to be accommodated shortly after the residence halls opened. In 2008 waiting lists were developed earlier in the summer and continued after opening. Students were placed in temporary housing until permanent assignments could be identified through attrition. The waiting list for fall 2008 exceeded 400 at one point at the beginning of June. The addition of new beds into the housing system will enable the university to meet the housing needs of more entering students whose enrollment far exceeds the availability of space.

This project will consist of two apartment buildings built contiguous to each other for a total of approximately 88,600 net square feet. One of the facilities will provide space for administrative offices as well as multi-purpose space for special activities and meetings, a central desk and mailing center, convenience store/café, estimated at 26,000 square feet.

Site:
Universe Project

Estimated New Space: TBD
Space to be Removed: None
Estimated Construction Period: TBD

Anticipated Community Impacts: Salt Lake City has created a Special Task Force that includes members from the City, Community Council Representatives, the University, and selected citizens at large from the immediate neighborhood. Once the project planning is underway, the developer will conduct meetings to invite input from the surrounding neighborhoods. It is through these processes that community impacts will identified and considered.

Community Concerns:
(Verbal comments and recommendations received from interested participants during the Community Forum meetings and written comments and recommendations received by Public Relations within 20 days after the meeting regarding the University’s physical facilities programs, its operations and their effects on residential and business neighborhoods)

Project Information:

The concept for the Universe Project (UP) is to create a vibrant campus entry containing commercial, retail, and housing opportunities that promote a high energy Transit Oriented Development while contributing positively to the University of Utah and surrounding neighborhood communities. Developer-owned improvements (“Developer Improvements”) will be part of the high quality, mixed use, development along with University-owned improvements (“University Improvements”).

University Improvements. The University Improvements may consist of the following:

1. 40,000 USF (usable square feet) building on the Site (including shell and core plus a standard market level of interior tenant improvements) for the Department of Continuing Education and for certain other University administrative functions, and associated site improvements and infrastructure such as utility connections, plaza, landscaping, sidewalks etc.

2. 500 or more vehicle parking structure (above grade and/or below grade) on the Site.

3. 130 or more vehicle parking spaces to be constructed in an above grade parking structure, which will be located at another campus site to be determined by the University.

Developer Improvements. The Developer Improvements must consist, at a minimum, of the following:
1. 150 two bedroom apartment style rental units with one and one-half bath, full kitchen and modern services and amenities. The units will be made available, on a priority basis, at market rents to University-related tenants.

2. 85,000 GSF entertainment, restaurant, service and lifestyle center catering to the needs of the university community, including a University bookstore of approximately 2000 USF.

Site and Infrastructure:
The Universe Project site is a 7.9 acre parking lot west of the University’s Rice Eccles Stadium located on the southwest corner of the University’s campus. The project developer will be responsible for all site development.
Photographs and Maps:

Conceptual Plan: Universe Project